AH ach ment: July 23, July 30 Page 1 of 4

August Trepented a-mail

Tequests for information

To wegman, 3 cott and Said,

No answer furth coming.

No answer furth coming.

To: ewegman@gmu.edu

Cc: scottdw@rice.edu, yhs@jhu.edu, Gerald North <g-north@tamu.edu>,

mann@psu.edu, Gavin Schmidt <gschmidt@giss.nasa.gov>

Subject: Re: Your report

Dear Drs Wegman, Scott and Said,

I am again forwarding to you my previous requests for information essential to evaluate and replicate elements of your report to Congressional Energy committee. I understand that people are away or pursuing other interests over the summer. However minimal professional courtesy would generally have ensured a reply as to when you people would provide the requested information. If I do not receive a reply in the next days I can only presume that the requested information will not be supplied. Frankly such an outcome would be quite unprecedented over my long scientific career

Sincerely

David Ritson

David Ritson, Emeritus Prof of Physics Physics Dept Varian Physics Building 382 Via Pueblo Mall Stanford University Stanford, CA 94305-4060, USA

e-mail: ritson@slac.stanford.edu Telephone number: 650/723-2685 FAX Number: 650/725/6544

On Sun, 30 Jul 2006, David M. Ritson wrote:

- > Dear Dr Wegman and colleagues,
- > I am forwarding below an e-mail I sent you and your colleagues
- > requesting essential, but missing, basic, information relative to your
- > report to Congress.
- > To facilitate a reply I attach the Auto-Correlation Function used
- > by the M&M to generate their persistent red noise simulations for their

- > figures shown by you in your Section 4 (this was kindly provided me by M&M on
- > Nov 6 2004). The black values are the ones actually used by M&M. They derive
- > directly from the seventy North American tree proxies, assuming the proxy values
- > to be TREND-LESS noise.
- > Surely you realized that the proxies combine the signal components on which is
- > superimposed the noise? I find it hard to believe that you would take
- > data with obvious trends, would then directly evaluate ACFs without

Aug 16 11:04 2006 Page 2

```
> removing the trends, and then finally assume you had obtained results for
the
```

- > proxy specific noise! You will notice that the M&M inputs purport to show
- > strong persistence out to lag-times of 350 years or beyond.
- > Your report makes no mention of this quite improper M&M procedure
- > used to obtain their ACFs. Neither do you provide any specification data for
- > your own results that you contend confirm the M&M results. Relative to your
- > Figure 4.4 you state
- > "One of the most compelling illustrations that M&M have produced
- > is created by feeding red noise (AR(1) with parameter = .2 into the MBH
- > algorithm".
- > In fact they used and needed the extraordinarily high persistances contained in
- > the attatched figure to obtain their `compelling' results.
- > Obviously the information requested below is essential for replication and
- > evaluation of your committee's results. I trust you will provide it in
- > timely fashion.
- > Sincerely

>

> David Ritson

D 11D1 F 11D1 Prof of Dhysics

- > David Ritson, Emeritus Prof of Physics
- > Physics Dept
- > Varian Physics Building
- > 382 Via Pueblo Mall
- > Stanford University
- > Stanford, CA 94305-4060, USA

> > e-mail: ritson@slac.stanford.edu

```
> Telephone number: 650/723-2685
> FAX Number: 650/725/6544
>
>
>
>
>
   ----- Forwarded message -----
> Date: Sun, 23 Jul 2006 15:31:09 -0700 (PDT)
> From: David M. Ritson < dmr@slac.stanford.edu>
> To: ewegman@gmu.edu
> Cc: scottdw@rice.edu, yhs@jhu.edu, Gerald North <g-north@tamu.edu>,
     mann@psu.edu
>
> Subject: Your report
> Dear Dr. Wegman,
> I read with interest you report to the Barton congressional committee.
> I am very familiar with the work and controversies surrounding the
> generation of "hockey-sticks" from trend-less red noise. Your Section 4
> showed several figures, accompanied by discussion. I have read it
```

Aug 16 11:04 2006 Page 3

```
carefully, and would appreciate some clarifications as to factual details.
1). Which of the figures derive from M&M work and which were
independently derived by you?
2). M&M used ARFIMA persistent red-noise throughout their published
work. You state that your figure 4.4 results from AR(1) .2 red-noise?
If so did you otherwise follow M&M using short-span normalization
and 70 member Monte Carlo generated ensembles? Did you use the same
AR(1) .2 noise to generate all your figures?
3). If you indeed used similar persistent red-noise to that used by
M&M do you believe it to be in accord with real-world proxy-specific noise?
4). Any of my colleagues would have routinely checked their results
to see if their derived PC1 (etc) derived from a systematic signal or from
random noise. For example for a 70 member population, all that is required
```

olumb lists bead and

> is to use the extracted PC1 vector from the 70 members, and apply it to
> each member to project out its relative sign (and amplitude). For signal > dominated results one sign will predominate and for noise dominated
> results both signs will be roughly equally present. Needless to say when, a
> couple of years ago, I checked the M&M work, I did just that.
> couple of yours ago, I oncoked the Meetil work, I that just that.
> The questions raised by your report are clearly of importance, and I
> would very much appreciate your clarifications of the above,
>
> Sincerely
>
> David Ritson
>
> David Ritson, Emeritus Prof of Physics
> Physics Dept
> Varian Physics Building
> 382 Via Pueblo Mall
> Stanford University
> Stanford, CA 94305-4060, USA
>
> e-mail: ritson@slac.stanford.edu
> Telephone number: 650/723-2685
> FAX Number: 650/725/6544
>
>
>

0.00